ME 6150: Numerical methods in Thermal Engineering

Instructor(s)

- Dr. Kameswararao Anupindi # 207, Thermal and Turbo Machines Lab kanupindi@iitm.ac.in
- Dr. Krithika Narayanaswamy # 203, Thermodynamics and Combustion Engineering Lab krithika@iitm.ac.in
- Dr. S. Varunkumar # 206B, Thermodynamics and Combustion Engineering Lab varuns@iitm.ac.in

General information

- 4 credit course
- 2 lecture hours per week: 'A' slot
 - Tuesdays 12–12:50 PM
 - Thursdays 11–11:50 AM
 - Venue: MSB
- 3 lab hours per week
 - Tue–Thurs: 2–5 PM
 - Venue: HPCF-B
- Announcements via moodle

Learning Outcomes

- Implement solution procedures for solving linear and non-linear algebraic equations, ordinary differential equations (ODEs), and partial differential equations (PDEs) on a computer.
- Acquire working knowledge of computational complexity, accuracy, stability, and errors in solution procedures.

Syllabus

- 1. Solution to Linear Algebraic Equations
 - (a) Gaussian elimination
 - (b) LU decomposition
 - (c) Pivoting strategies
 - (d) Operation Count
 - (e) Matrix inversion
 - (f) Special cases
 - i. Tridiagonal systems
 - ii. Block tridiagonal systems
 - (g) Well conditioned and Ill conditioned system
 - (h) Matrix and Vector norms
 - (i) Condition Number and its implications

2. Solution to Non-linear Algebraic Equations

- (a) Bisection, Newton-Raphson, and Secant method
- (b) System of non-linear equations

3. Basics of finite difference method

- (a) Discretization of spatial and time derivatives using Taylor's series
- (b) Truncation error and order of discretization
- (c) Fourier (von Neumann) accuracy analysis

4. Solution to Ordinary Differential Equations

- (a) Initial Value problems
 - i. Euler explicit and implicit methods
 - ii. Runge-Kutta method
 - iii. Predictor-Corrector methods
- (b) Boundary value problem
 - i. Shooting method
 - ii. Finite difference method applied to pin fin heat dissipation
- (c) Stiff problems
 - i. Meaning of stiffness
 - ii. Further insights into stiffness by the application of Euler explicit and implicit method to a stiff problem
 - iii. Solution to stiff problem
 - iv. Example Chemical kinetics

5. Solution to Partial Differential Equations

- (a) Classification of PDEs and characteristics of a PDE
- (b) Solution to Elliptic Partial Differential Equations
 - i. Physical problems governed by elliptic PDE's
 - ii. Five-point and nine-point discretization of Poisson's equation
 - iii. Iterative methods
 - A. Point Iterative methods Jacobi, Gauss-Seidel, and SOR
 - B. Detailed theory of the convergence of iterative methods
 - C. Global Iterative methods Steepest Descent and Conjugate Gradient
- (c) Solution to Parabolic Partial Differential Equations
 - i. Physical problems governed by parabolic PDE's
 - ii. Operator splitting and ADI methods

Suggested Textbooks

- Matrix Computations G. H. Golub, Johns Hopkins University Press
- Numerical Recipes W. H. Press et al.
- Numerical Solution of Partial Differential Equations: Finite Difference Methods G. D. Smith, Oxford University Press, (1985)
- Engineering numerical analysis Parviz Moin (2nd edition, 2010), Cambridge University Press.
- Introduction to Numerical Analysis Kendall Atkinson
- Numerical methods for scientists and engineers J. Hoffman and S. Frankel, CRC Press
- Numerical Mathematics and Computing W. Cheney and D. Kincaid, International Thomson Publishing Company
- Applied Numerical Analysis C. Gerald and P. Wheatley, Addison-Wesley
- Analysis of Numerical Methods E. Isaacson and H. B. Keller, John Wiley & Sons

Pre-requisites

- Knowledge of Engineering Mathematics
 - Basics of matrix algebra
 - Basics of ODEs and PDEs
- $\bullet\,$ Familiarity with one of the programming languages FORTRAN/C/C++
- Familiarity with plotting software such as gnuplot and any editor such as vi, emacs, gedit
- Familiartiy with linux operating system
- No consent of teacher required

Grading Policy

- Assignments 20%
 - Theoretical
 - Computational
- Quiz 1 Theory 15%
- Quiz 2 Theory 15%
- Final exam
 - Theoretical 40%
 - Computational 10%
- Institute norm Attendance $\geq 85\%$